УДК 551.510.5:551.510.4

Применение самолета Ан-2 для исследования состава воздуха в пограничном слое атмосферы

П.Н. Антохин¹, М.Ю. Аршинов¹, Б.Д. Белан¹, С.Б. Белан¹, Д.К. Давыдов¹, А.В. Козлов¹, О.А. Краснов¹, Д.А. Пестунов¹, О.В. Праслова¹, А.В. Фофонов¹, G. Inoue², Т. Machida³, Ш. Максютов³, К. Shimoyama⁴, H. Sutoh⁵*

> ¹Институт оптики атмосферы им. В.Е. Зуева СО РАН 634021, г. Томск, пл. Академика Зуева, 1, Россия ²Research Institute for Humanity and Nature, Kyoto, Japan ³National Institute for Environmental Studies 16-2 Onogawa, 305-8506, Tsukuba, Japan ⁴Hokkaido University, Sapporo, Japan ⁵Japan Aerospace Exploration Agency, Tsukuba, Japan

> > Поступила в редакцию 16.01.2012 г.

Представлен комплекс оборудования для измерения вертикального распределения концентрации малых газовых компонентов воздуха в пограничном слое атмосферы. Измерения производятся с борта самолета Ан-2. Комплекс позволяет осуществлять запись параметров полета и концентраций измеряемых веществ с частотой 1 раз в секунду. Приведены данные о годовом и суточном ходе концентрации озона в 2011 г.

Ключевые слова: атмосфера, воздух, вертикальное распределение, газы, пограничный слой; atmosphere, air, vertical distribution, gas, boundary layer.

Введение

Пограничный слой представляет собой чувствительный и изменчивый элемент атмосферы, который регулирует потоки энергии, количества движения и перенос примесей между подстилающей поверхностью и свободной тропосферой [1]. Давно установлено, что основная масса примесей, как природных, так и антропогенных, генерируется подстилающей поверхностью или объектами, на ней расположенными. В ночное время они накапливаются во внутреннем слое перемешивания, а после восхода солнца и его разрушения (за счет усиления турбулентного обмена) примеси распространяются внутри всего пограничного слоя атмосферы (ПСА) [2, 3]. Несмотря на длительную историю исследования строения пограничного слоя и распределения в нем газовых и аэрозольных компонент, многие аспекты проблемы остаются не до конца понятными. Подробный перечень задач, требующих дополнительного изучения, приведен в [1]. Не повторяя его, отметим, что одной из них является недостаточное количество данных измерений распределения и динамики примесей в ПСА.

Для исследования вертикального распределения метеовеличин и примесей применяется широкий набор методов и средств. Нижняя часть пограничного слоя наиболее эффективно может быть изучена с помощью высотных мачт, на которых размещается оборудование на разных высотах [4]. Информацию о распределении атмосферных параметров во всем ПСА дает способ размещения приборов на какой-либо платформе, перемещающейся в пространстве. Первыми были озонозонды, применение которых описано в [5]. В ходе проведенных сопоставлений оказалось, что они из-за инерционности занижают значение концентрации в пограничном слое. Поэтому в дальнейшем стали применяться тетрабаллоны, которые позволяют проводить измерения на нужной высоте с необходимым промежутком времени [6, 7]. К более сложным относятся самолетное и вертолетное зондирования [8, 9]. В последние годы для измерения отдельных характеристик ПСА начали использоваться лидары и содары [3, 10]. Тем не менее самым информативным является самолетное зондирование, которое позволяет определять не только вертикальное распределение искомых величин, но

© Антохин П.Н., Аршинов М.Ю., Белан Б.Д. и др., 2012

^{*} Павел Николаевич Антохин; Михаил Юрьевич Аршинов (michael@iao.ru); Борис Денисович Белан (bbd@iao.ru); Сергей Борисович Белан; Денис Константинович Давыдов (denic@iao.ru); Артем Владимирович Козлов (Atommyk@ mail2000.ru); Олег Александрович Краснов (krasnov@iao.ru); Дмитрий Александрович Пестунов (pest@iao.ru); Ольга Викторовна Праслова; Александр Владиславович Фофонов (alenfo@iao.ru); G. Inoue; T. Machida; Шамиль Максютов; К. Shimoyama; H. Sutoh.

и горизонтальное, а также изучать их динамику во времени.

Применение самолетов для исследования ПСА имеет свои особенности. Во-первых, использование обычных самолетов-лабораторий, таких, например, как Ан-30 или Ту-134 [11, 12], недостаточно эффективно. Они имеют высокие горизонтальные и подъемные скорости, что приводит к снижению пространственного разрешения получаемых данных. Во-вторых, у таких машин высокие эксплуатационные расходы. В связи с этим для проведения измерений в ПСА прибегают к услугам малой авиации. На сайте Организации Европейского флота исследовательских самолетов (European Facility for Airborne Research) представлено 11 самолетов для изучения нижней тропосферы [13]. По такому же пути пошли и авторы настоящей статьи. Для создания мобильного инструмента мониторинга параметров пограничного слоя атмосферы был выбран самолет Ан-2. Он имеет следующие основные характеристики, которые важны при проведении измерений в ПСА. Самолет способен поднять 1500 кг полезного груза. Скорость движения 150-190 км/ч. Дальность полета при полной загрузке около 1000 км. Максимальная высота подъема 4000 м. В настоящей статье даются описание приборного комплекса, установленного на Ан-2, некоторые особенности методики измерений и представлены первые результаты.

Оборудование и методы исследования

При организации измерений с борта самолета важнейшим элементом процесса является корректный подвод пробы внешнего воздуха к измерительным приборам. Поскольку у Ан-2 винт находится в носовой части фюзеляжа, то заборник был вынесен на левую часть в промежуток между крыльями, как это показано на рис. 1. Внешний вид стойки с приборами показан на рис. 2.

Рис. 2. Размещение приборной стойки внутри самолета Ан-2

Разработанный комплекс условно можно разделить на три части (рис. 3).

Первая часть включает в себя систему сбора и распределения пробы забортного воздуха, состоящую из политетрафторэтиленовых (ПТФЭ) трубок, ресивера и ПТФЭ-насоса. Необходимость применения ПТФЭ-материалов в системе подачи пробы — это

Рис. 1. Размещение оборудования на самолете Ан-2: 1 — заборник и блок метеодатчиков; 2 — канал подачи забортного воздуха; 3 — стойка с приборами; 4 — система регистрации; 5 — стойка с приборами

Рис. З. Структурная схема измерительного комплекса

химическая нейтральность к активным газовым примесям. Отметим, что система способна обеспечить максимальный расход до 20 л/мин.

Вторая часть — блок газоанализаторов, к которым подается проба. В настоящее время самолет оснащен хемилюминесцентным газоанализатором ОПТЭК 3.02П и газоанализатором TEI Model-49, работающим на принципе УФ-поглощения, предназначенными для измерения концентрации озона в атмосферном воздухе. Сочетание двух приборов, основанных на разном принципе действия, позволяет получать более надежные результаты. В комплекс также входят газоанализатор углекислого газа LI-COR-800 и метеоблок. Технические характеристики приборов сведены в таблицу.

Третья часть — это система регистрации параметров полета и данных, поступающих от газоанализаторов и других датчиков. Она позволяет вести регистрацию параметров полета, показаний метеодатчиков и научных приборов с частотой 1 Гц. Программное обеспечение системы регистрации позволяет в короткий срок проводить масштабирование системы, добавлять новые приборы и изменять калибровочные характеристики. Максимальное число измеряемых параметров определяется числом аналоговых входов АЦП (в данной системе — 32 канала).

Важным этапом при проведении измерений является калибровка приборов. Перед каждым вылетом приборы калибруются с использованием генератора озона ГС-024-21 («ОПТЭК», г. Санкт-Петербург). Для калибровки газоанализатора LI-COR-800 используются поверочные смеси, которые имеют концентрации CO₂ ниже и выше атмосферной.

Известно, что пограничный слой атмосферы характеризуется повышенным уровнем турбулентности. Это вызывает флуктуации регистрируемых величин. Поэтому полученные в ходе полета данные сглаживались для исключения турбулентных флуктуаций. Для построения вертикального распределения измеряемых величин был использован кригингалгоритм точечного типа для линейных вариограмм с наклоном S = 1 и анизотропией A = 1, который предоставил приемлемое сглаживание данных [14]. Пример исходных и сглаженных результатов приведен на рис. 4.

Прибор или датчик	Диапазон измерений	Погрешность	Частота измерений, Гц
O ₃ (TEI Model-49)	1-200000 млрд ⁻¹	1 млрд ⁻¹	0,2
О ₃ (ОПТЭК 3.02П)	$1{-}500~{ m mkr}/{ m m}^3$	13%	1
CO ₂ (LI-COR-800)	$0-2000 \text{ млн}^{-1}$	1 млн ⁻¹	1
Датчик температуры (Vaisala HMP45A)	−40+60 °C	0,2 °C	1
Датчик относительной влажности (Vaisala HMP45A)	0,8–100%	2%	1
Датчик давления MPX4115AP (Motorola)	15—115 кПа	1,5%	1

Антохин П.Н., Аршинов М.Ю., Белан Б.Д. и др.

Рис. 4. Данные измерений, полученные 16.09.2011 в 12:10 местного времени

Начиная с июля 2010 г. комплекс стал использоваться при проведении измерений вертикального распределения концентрации озона и углекислого газа в ПСА. Район экспериментов находится недалеко от д. Березоречка Томской области. Измерения профиля проводятся над постом измерения парниковых газов Российско-японского проекта «Башни» [15]. Пост представляет собой оснащенную исследовательским оборудованием мачту, расположенную внутри большого лесного массива на удалении 60 км от г. Томска (координаты поста 56°08' с.ш. и 84°20' в.д.). Благодаря такой комбинации, удается получить профиль от поверхности земли до высоты 3000 м в летний период и 2000 м в зимний. Схема выполнения зондирования приведена на рис. 5.

Взлет самолета производится из аэропорта Томского ДОСААФ (Головино). Затем он набирает мак-

симальную высоту: 3000 м летом и 2000 м зимой. Выходит в район расположения мачты вблизи д. Березоречка, где производится снижение по спирали до высоты 100 м над уровнем земли. После выполнения зондирования возвращается в аэропорт.

Разовые зондирования выполняются около полудня, когда внутренний слой перемешивания отсутствует. Для суточного цикла используется следующая схема: первый вылет сразу же после восхода Солнца; второй — в полдень, когда наблюдается максимум концентрации озона в приземном слое воздуха; третий – через 2–3 ч после полудня, когда максимум турбулентности должен наблюдаться вблизи верхней границы пограничного слоя атмосферы; четвертый – вечером, перед заходом Солнца. Такую схему предполагается применять в характерные периоды года: зимой (минимум концентрации озона); во время весеннего первичного максимума концентрации озона в приземном слое воздуха; летом (основной максимум концентрации озона) и осенью, когда поступление озонообразующих веществ уменьшается, но приток солнечной энергии все еще высок.

Результаты измерений

В ходе каждого полета получается набор вертикальных профилей, как показано на рис. 6.

Поскольку полеты выполнялись в течение всего года, то это позволило по разовым профилям восстановить годовой ход изменения концентрации озона в пограничном слое атмосферы для одного из фоновых районов Западной Сибири (рис. 7).

Из рис. 7 видно, что основная динамика содержания озона наблюдается в нижней части пограничного слоя. В свободной тропосфере она значительно ниже. В 2011 г. виден отчетливый максимум концентрации в весенний период (март—май). При этом концентрация озона достигает в максимуме 60 млрд⁻¹ на высоте 500 м, что в 2 раза выше, чем в свободной тропосфере. На наш взгляд, уже этот факт сам подтверждает фотохимическую природу максимума.

Суточная динамика вертикального распределения озона и метеовеличин была впервые получена 16 сентября 2011 г. Несмотря на предварительный анализ синоптической ситуации, в ходе которого выбирался период с устойчивой погодой (рис. 8), поставленная цель — исследование суточной динамики вертикального распределения концентрации озона в этом эксперименте не была достигнута.

Из рис. 8 видно, что в течение дня произошло уменьшение концентрации озона во всем пограничном слое. При этом вертикальное распределение температуры изменялось только в пограничном слое. В свободной атмосфере вариации температуры не превышали естественной изменчивости для однородной воздушной массы. Возможно, что на результаты измерений повлияла погода предыдущего периода, когда в течение нескольких дней шли дожди средней и большой интенсивности. Более того, такие же дожди наблюдались и в день эксперимента. Это могло привести к очищению атмосферы от газов-предшественников озона и замедлению их поступления с подстилающей поверхности. В результате низкой концентрации таких газов фотохимическое образование озона оказалось незначительным. К сожалению, необходимость длительного согласования времени вылета не дала возможности перенести измерения на другой день.

Рис. 6. Вертикальные профили 14.12.2011 в 12:00 местного времени над д. Березоречка: 1 — температура; 2 — относительная влажность; 3 — давление; 4 — концентрация озона по 3-02П; 5 — концентрация озона по TEI Model-49; 6 — концентрация CO₂

Антохин П.Н., Аршинов М.Ю., Белан Б.Д. и др.

718

Рис. 7. Временной ход концентрации озона (2011 г.) в пограничном слое воздуха в районе д. Березоречка Томской области

Рис. 8. Вертикальное распределение озона и температуры воздуха над д. Березоречка Томской области 16 сентября 2011 г.

В заключение отметим, что в результате проделанной работы был создан комплекс для измерения малых газовых компонентов воздуха, который может использоваться для мониторинга атмосферных параметров, исследования загрязнения города, выбросов предприятий, оценки эмиссии угарного газа при лесных пожарах и т.п.

Работа выполнена при поддержке программы Президиума РАН № 4 «Окружающая среда в условиях изменяющегося климата: экстремальные природные явления и катастрофы», грантов РФФИ № 11-05-00470, 11-05-00516, 11-05-93116 и 11-05-93118, госконтрактов Минобрнауки № 02.740.11.0674, 14.740.11.0204 и 11.519.11.5009, Фонда глобальных исследований окружающей среды для Национальных институтов Министерства окружающей среды Японии.

- Baklanov A.A., Grisogono B., Bornstein R., Mahrt L., Zilitinkevich S.S., Taylor P., Larsen S.E., Rotach M.W., Fernando H.J.S. The nature, theory, and modeling of atmospheric planetary boundary layers // Bull. Amer. Meteorol. Soc. 2011. V. 92, N 2. P. 123–128.
- 2. Белан Б.Д. Динамика слоя перемешивания по аэрозольным данным // Оптика атмосф. и океана. 1994. Т. 7, № 8. С. 1045–1054.
- 3. Балин Ю.С., Ершов А.Д. Вертикальная структура аэрозольных полей пограничного слоя атмосферы по данным лазерного зондирования // Оптика атмосф. и океана. 1999. Т. 12, № 7. С. 616–623.
- Hu X.-M., Doughty D.C., Sanchez K.J., Joseph E., Fuentes J.D. Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model // Atmos. Environ. 2012. V. 46, N 1. P. 354-364.

Применение самолета Ан-2 для исследования состава воздуха в пограничном слое атмосферы 719

- 5. Белан Б.Д. Озон в тропосфере. Томск: Изд-во ИОА СО РАН, 2010. 488 с.
- Hara K., Osada K., Nishita-Hara C., Yamanouchi T. Seasonal variations and vertical features of aerosol particles in the Antarctic troposphere // Atmos. Chem. Phys. 2011. V. 11, N 11. P. 5471–5484.
- Sangiorgi G., Ferrero L., Perrone M.G., Bolzacchini E., Duane M., Larsen B.R. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered ballon measurements in Milan, Italy // Environ. Pollut. 2011. V. 159, N 12. P. 3545– 3552.
- Minoura H., Shimo N. Spatial distribution of particle number concentration and its volume change in the planetary boundary layer over Tokyo and its suburban areas // Atmos. Environ. 2011. V. 45, N 1. P. 4603– 4610.
- Williams A.G., Zanorowski W., Chambers S., Griffiths A., Hacker J.M., Element A., Werczynski S. The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers // J. Atmos. Sci. 2011. V. 68, N 1. P. 155–174.
- Одинцов С.Я. Исследования атмосферного пограничного слоя методами локальной и дистанционной акустической диагностики в ИОА СО РАН // Оптика атмосф. и океана. 2009. Т. 22, № 10. С. 981–987.

- 11. Аршинов М.Ю., Белан Б.Д., Давыдов Д.К., Ивлев Г.А., Козлов А.В., Козлов В.С., Панченко М.В., Пеннер И.Э., Пестунов Д.А., Симоненков Д.В., Толмачев Г.Н., Фофонов А.В., Шаманаев В.С., Шмаргунов В.П. Самолетлаборатория АН-30 «Оптик-Э»: 20 лет исследования окружающей среды // Оптика атмосф. и океана. 2009. Т. 22, № 10. С. 950–957.
- Анохин Г.Г., Антохин П.Н., Аршинов М.Ю., Барсук В.Е., Белан Б.Д., Белан С.Б., Давыдов Д.К., Ивлев Г.А., Козлов А.В., Козлов В.С., Морозов М.В., Панченко М.В., Пеннер И.Э., Пестунов Д.А., Сиков Г.П., Симоненков Д.В., Синицын Д.С., Толмачев Г.Н., Филиппов Д.В., Фофонов А.В., Чернов Д.Г., Шаманаев В.С., Шмаргунов В.П. Самолет-лаборатория Ту-134 «Оптик» // Оптика атмосф. и океана. 2011. Т. 24, № 9. С. 805–816.
- 13. URL: http://www.eufar.net
- Deutsch C. V., Journel A.G. GSLIB Geostatistical Software Library and User's Guide. N.Y.: Oxford University Press, 1992. 338 p.
- 15. Аршинов М.Ю., Белан Б.Д., Давыдов Д.К., Иноуйе Г., Краснов О.А., Мачида Т., Максютов Ш., Недэлэк Ф., Рамонет М., Сиас Ф., Толмачев Г.Н., Фофонов А.В. Организация мониторинга парниковых и окисляющих атмосферу компонент над территорией Сибири и некоторые его результаты. 1. Газовый состав // Оптика атмосф. и океана. 2006. Т. 19, № 11. С. 948–955.

P.N. Antokhin, M.Yu. Arshinov, B.D. Belan, S.B. Belan, D.K. Davydov, A.V. Kozlov, O.A. Krasnov, D.A. Pestunov, O.V. Praslova, A.V. Fofonov, G. Inoue, T. Machida, Sh. Maksyutov, K. Shimoyama, H. Sutoh. An-2 aircraft investigation of air composition in the atmospheric boundary layer.

The equipment complex for measurement of vertical distribution of concentration of trace gas components of air in a boundary layer of the atmosphere is submitted. Measurements are made from a board of the aircraft An-2. The complex allows one to carry out recording parameters of flight and concentration substances with a frequency of 1 time per one second. The data on annual and daily behavior of the ozone concentration in 2011 are given.