
ISSN 1024�8560, Atmospheric and Oceanic Optics, 2016, Vol. 29, No. 1, pp. 1–4. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © M.Yu. Arshinov, B.D. Belan, N.G. Voronetskaya, A.K. Golovko, D.K. Davydov, A.S. Kozlov, S.B. Malyshkin, G.S. Pevneva, D.V. Simonenkov, G.N. Tolma�
chev, 2015, published in Optika Atmosfery i Okeana.

1

INTRODUCTION

Atmospheric aerosol plays an important role in
many atmospheric processes. The report of the Inter�
national Panel on Climate Change, published recently
[1], indicated once more the ambiguous contribution
of aerosol to the radiation budget of the planet and,
correspondingly, to global climate change. In aerosol
composition, there is a great number of dangerous
compounds such as aromatic hydrocarbons and chlo�
rine�, sulfur�, and nitrogen�containing species [2, 3],
which explains the ecological significance of their
study. Changes in the concentration of many organic
components under the impact of human activity can
change the whole structure of atmospheric processes
to an extent difficult to predict [4].

It has long been believed [5] that the inorganic
component dominates the chemical composition of
atmospheric aerosols. The contribution of the carbon
component does not exceed a few percent. Subsequent
studies have shown that the inorganic component
contributes 25–50% to the composition of microdis�
persed (nanoparticles) and submicron aerosol frac�
tions, whereas organic species may account for from
40 to 65% in composition of the same particles [6],
and this contribution is highly variable [7].

Moreover, experiments have shown that the contri�
bution of the organic component can reach 80% in the
microdisperse fraction [8], indicating that there are
considerable deviations from the commonly accepted
theory of binary and ternary nucleation in the atmo�
sphere [9, 10], thus motivating a closer look at nano�
particle formation in the atmosphere. Recently, many
hopes for a better understanding of the nature of
nucleation are associated with recognition of an
important role the Criegee radicals play in the chemi�
cal processes in the atmosphere [11, 12].

In the near�ground atmospheric layer, the organic
component of aerosol has been studied quite inten�
sively by a large number of research groups. For
instance, the authors of work [13] compared data from
25 measurement sites and identified the main sources
of organic particles. The natural organic gases include
additions from plants and forest fires; among the
anthropogenic contributions, combustion of different
fuel types; and in maritime regions, dimethyl sulfide.
It is noteworthy that the contribution of each source
can vary from 10 to 80%, depending on region.

In the free atmosphere, the organic component of
aerosol has been very poorly studied. The authors of
work [14] showed that the concentration increases by
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a factor of 2.5 when going from the Earth’s surface to
an altitude of 2 km, and levels off further upward.
Authors of work [15] report neutral vertical behavior of
concentration with altitude. In later works [16, 17],
authors show that the concentration decreases with
increasing altitude. Hence, the study of the organic
component of aerosol in the free atmosphere is very
important.

METHOD FOR SAMPLING
AND SAMPLE ANALYSIS

Aerosol samples were collected onboard the Tu�
134 Optik airborne laboratory in the atmospheric layer
from 500 to 8500 m. The laboratory and the instru�
mentation used were described in [18]. Aerosol sam�
ples were collected in different periods from 2012 to
2015 in the course of regular flights in the region of the
Karakansk pine forest, located on right bank of the

southern part of the Novosibirsk reservoir. Teflon ana�
lytical membranes Grimm 1.113A with pore diameters
of 1.2 µm were used for concentrating the aerosol.

Collected samples were singly extracted with ace�
tone, concentrated to 50 µL, with a subsequent analy�
sis on a chromato�mass�spectrometer Agilent 6890N
as the temperature of analysis was raised from 50 to
250°C at a heating rate of 5°C/min; isotherms at ini�
tial and final temperatures were 3 and 45 min, respec�
tively. The hydrocarbons were identified using libraries
of NIST mass spectrum databases, as well as by com�
paring retention times of individual n�alkanes in a
standard reference mixture (Alkane Standard Solutions
C8–C20 and C21–C40 by SIGMA�ALDRICH). The
analysis technique was described in more detail in [19].

To date, we accumulated 26 vertical profiles, allow�
ing us to proceed from the analysis of individual sam�
ples [20] to a more general consideration of measure�
ments performed.

RESULTS AND DISCUSSION

We will first consider how the total identified part of
the organic component of aerosol behaves during the
year. These data are shown in Fig. 1. For seasonal aver�
aging, we used 9 samples for the winter season,
10 samples for spring, 4 samples for summer, and
3 samples for fall.

From Fig. 1 it can be seen that the organic compo�
nent in aerosol composition has maximal concentra�
tion during spring and a little smaller concentration
during summer. The smallest content of organic sub�
stance is observed during fall. Also, concentrations are
most dispersed during spring period.

A similar annual behavior in the near�ground air layer
is also recorded in other regions [21–23], primarily
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Fig. 1. Multiyear (2012–2015) average concentration of
organic aerosol component in the free atmosphere over
South�Western Siberia.
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Fig. 2. Seasonal variations in the composition of organic compounds in aerosol in the free atmosphere.
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because of the seasonality of the supply of organic pre�
cursor gases by plants for aerosol particle formation.

The organic component in particle composition
has a much smaller concentration in the free atmo�
sphere than in the near�ground air layer [24, 25]. On
one hand, this confirms the result of work [16, 17],
indicating that concentration decreases with altitude;
on the other hand, this suggests that the source of the
organic component of aerosol is located on the under�
lying surface.

The composition of aerosol�contained organic
compounds is shown in Fig. 2, from which it can be
seen that aerosol particles show marked seasonal dif�
ferences in composition, with compounds ranging
from C8H18 to C35H72. Hydrocarbons show the widest
range in composition during the winter season
(C12H26–C35H72) and during spring (C8H18–C31H64),
and this range is markedly narrower during summer
(C18H38–C33H68) and fall (C16H34–C31H64).

A single mode (n�alkane with composition C20H42)
predominates throughout the year. A secondary maxi�
mum, corresponding to n�alkane with composition
C29H60, appears during summer, probably due to forest
fires [20].

Data, similar in species composition, were pre�
sented in a number of works, in which the organic
aerosol component was studied [26–29]. They dif�
fered from our data by species concentrations, which
are an order of magnitude smaller in the free atmo�
sphere.

CONCLUSIONS

The identified part of the organic aerosol has a
marked annual behavior, with a maximum in the
spring period and a minimum during fall.

Hydrocarbons, ranging from C8H18 to C35H72, are
observed in the particle composition of the organic
aerosol component in the free atmosphere. It is note�
worthy that the composition markedly varies with sea�
son. Hydrocarbon composition varies in the widest
range during the winter period and during spring, and
in a markedly narrower range during summer and fall.

A single mode (n�alkane with composition C20H42)
predominates throughout the year. The summer
period is characterized by the appearance of a second�
ary maximum, corresponding to n�alkane with com�
position C29H60 and, possibly, caused by forest fires.
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