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Inarecent publication in Nature Climate Change, Tang et al. reported
anincrease in net CO, release under northern autumn cooling from
2004102018, indicating that both autumn warming and cooling result
in net CO, release. Here we show that the conclusion regarding net
CO, release under autumn cooling was impacted by the choice of the
autumn period, which resulted in overlooking the appropriate cooling
regions. Our analysis of individual months in autumn with empiri-
cal upscaling of eddy flux observations (FLUXCOM?, the same data
used by Tang et al.’) and atmospheric CO, measurements from seven
towers’® suggested that the increased net CO, release paused during
the 2004-2018 autumn cooling in central Eurasia.

With ‘autumn’ defined as a period from September to Novem-
ber, Tang et al.' concluded that the widespread autumn cooling for
2004-2018induced anincreasing trendin the net CO, release. However,
this definition of autumnis notideal for assessing the effect of autumn
cooling on CO, fluxes because three-month averages obscure whether
the cooling occurred inmonths with temperatures above 0 °C. As CO,
fluxes, particularly gross primary production (GPP), become extremely
small below O °C, itis possible that the autumn cooling barely affected
fluxesinregions where cooling occurredin months when temperatures
were already below 0 °C. To evaluate this aspect, we used Climate
Research Union (CRU) TS4.05 (ref. *) data to classify the land north of
25° Ninto four regions by months when temperatures fall below 0 °C
(Fig. 1a): regions with monthly mean temperature (MMT) of all three
monthsbelow 0 °C (Regl), regions with MMT of October and November
below 0 °C (Reg2), regions with MMT of November below O °C (Reg3)
and regions with MMT of all three months above 0 °C (Reg4).

AsTangetal. reported, CRUTS4.05 dataindicate that the cooling
trend for September-October-November (SON) is widespread north of
25°N, and the cooling areas largely overlap with Reg2 and Reg3 of both
North Americaand Eurasia (Fig. 1b). However, for September-October
(S0), the spatial extent of the cooling trend reduced northward inNorth
America; consequently, the cooling areas remained in Reg2 and barely
overlapped with Reg3 (Fig. 1b). Having these results, caution should be
applied while considering whether North America is an appropriate
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region for evaluating the relationship between autumn cooling and
CO, fluxes. Variations in CO, fluxes may be small in the cooling area
overlapping with Reg2 as only sparse vegetation inhabits that area
(Supplementary Fig.1). Similarly, the cooling areain Reg3 is unlikely to
causealarge variation in CO, fluxes because the cooling in this region
occursinNovember when MMT is below O °C (Fig. 1b). Regional mean
temperatures (Fig.1c-h) indicated that contrary to that of SON (Fig. 1d),
SO temperature for Reg3 of North Americaincreased during 2004-
2018 (Fig. 1g), suggesting that the apparent cooling trend created by
averaging the data for the three months concealed the warming trend.

Contrary to thatin North America, the widespread cooling trend
in Eurasia remained the same for SON and SO, overlapping the most
inReg3 (Fig. 1b). Regional mean SON and SO temperatures indicated
that among all the regions north of 25° N, Reg2-3 of Eurasia largely
reflected a transition from autumn warming to cooling around 2004
(Fig. 1c,d,f,g). As the Eurasian cooling area largely overlaps with the
distribution of boreal forests, this region probably impacted CO, fluxes
(Supplementary Fig.1).

Assessment of the contrasting effects of the autumn cooling and
warming on CO, fluxes indicates that monthly GPP and terrestrial
ecosystem respiration (TER) from FLUXCOM tended to show posi-
tive trends for 2004-2018 in Reg2-3 of North America but a negative
trendinReg2-3 of Eurasia (Fig. 1i,j). This result was consistent with our
expectation that, for North America, the warming effect on CO, fluxes
is more profound than the cooling effect and vice versa for Eurasia;
thus, trends in CO, fluxes should be opposite between these regions.
In Reg4 of North America and Eurasia, where the autumn warming is
profound (Fig.1e,h), trendsin monthly TER were positive whereas those
in GPP varied monthly (Fig. 1k). In all the regions, trends in monthly
TER tended to be greater than those in monthly GPP, indicating that
autumn temperatures influence TER more than GPP (Fig. 1li-k). This
result is opposite to the conclusion of Tang et al.' that the autumn
coolinginduced agreater decrease in GPP thanin TER.

Considering GPP and TER trends, it is not the best approach to
group thelands north of 25° N (that is, Regl-4) to assess the effect of
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Fig.1|Regional patterns of 2004-2018 autumn cooling and associated GPP
and TER trends for the land north of25° N. a, Spatial patterns of four regions
(Regl-4) classified by MMT for 2004-2018 based on CRU TS4.05. b, Spatial
patterns of trends in SON and SO temperatures during 2004-2018. Thick black
linesina,b represent aborder of Reg3. c-h, Interannual variability in regional
mean SON temperatures for Reg2 (c), Reg3 (d) and Reg4 (e) of North Americaand
Eurasia, and in regional mean SO temperatures for Reg2 (f), Reg3 (g) and Reg4

(h) of North America and Eurasia. Linear regressions are shown for the periods
1980-2006 and 2004-2018 for North America (blue dashed lines) and Eurasia
(red dashed lines), respectively, and statistics of linear regression for the period
2004-2018 are shown for North America (blue letters) and Eurasia (red letters).
i-k, Trends of GPP and TER from FLUXCOM for Reg2 (i), Reg3 (j) and Reg4 (k) of
North Americaand Eurasia for the period 2004-2018. *indicates that P < 0.05 for
allresults. S, September; O, October; N, November.

autumn cooling on net ecosystem exchange (NEE). Even with Reg4
excluded from the estimate, the autumn (defined as SON) NEE from
FLUXCOM did not show a decreasing trend during 2004-2018 for
allthe lands north of 25° N (Fig. 2a; corresponding to Fig. 2a by Tang
etal.’). Focusing on the individual continent, autumn NEE for North
America continuously increased in Regl-3 since 1980 and includ-
ing Reg4 enhanced the increasing trend for 2004-2018 (Fig. 2b).
However, irrespective of whether Reg4 was included, autumn NEE

for Eurasiaindicated a transition from anincreasing to a decreasing
trend around 2004 with a notable anomalous decrease between 2011
and 2016 (Fig. 2c). Thisis consistent with the pattern of temperatures
(Fig.1d,g).

Multi-site CO, measurements in central Eurasia, where significant
autumn cooling occurred around the towers (Supplementary Figs.2and
3 and Supplementary Table 1), also showed a decrease in atmospheric
CO,between2011and 2016 inresponse tothe SO temperature, regardless
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Fig. 2| Interannual variability of autumn NEE and CO,. a-c, Interannual
variability in SON NEE from FLUXCOM for the lands north of 25° N (including
North America and Eurasia) (a), North America (b) and Eurasia (c). Results are
shown for the sums of Regl-3 and Regl-4 along with Pearson correlations
between FLUXCOM NEE and CRU TS4.05 temperature (*indicates that P< 0.05
forallresults). Linear regressions are shown for the periods 1980-2006 and
2004-2018 for Regl-3 (blue dashed lines) and Regl-4 (red dashed lines),
respectively, and statistics of linear regression for the period 2004-2018 are
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shown for Regl-3 (blue letters) and Regl-4 (red letters). Interannual variability
in daytime temperature (12:00-18:00) and detrended CO, (corresponding to the
same daytime) averaged for SO. d-e, Results are shown for towers surrounded by
forests, Berezorechka (BRZ), Demyanskoe (DEM), Karasevoe (KRS) and Noyabrsk
(NOY), and average (AVG) of the four site data (d) and grasslands, Azovo (AZV),
Savvushka (SVV) and Vaganovo (VGN), and average (AVG) of the three site data
(e) (Supplementary Table 1). Grey shading in c-e represents the period in which
anomalous decreases in temperature and NEE were found.

of the surrounding ecosystem types: forests or grasslands (Fig. 2d,e).
Tang et al. used atmospheric CO, measurements at Point Barrow as
observational support for increasing CO, release under autumn cool-
ing, but this is misleading because Point Barrow is targeted to measure
the background concentration in the northern ‘high’ latitudes®, where
the autumn warmingis more profound (for example, Alaska and north-
eastern Siberia; Fig. 1b). Further, even if Point Barrow reflects changes
inatmospheric CO,innorthernmiddle latitudes, it is unlikely to detect
the autumn cooling effect fromits measurements as the warming effect
inNorth America overwhelms the cooling effect in Eurasia (Fig. 2a-c).
In summary, the conclusion drawn by Tang et al.' could be attrib-
uted to overlooking the appropriate autumnperiod and cooling region.
Aswehave demonstrated, athree-month average resulted in misiden-
tifying the regions where the autumn cooling or warming affected CO,
fluxes, thus leading to the biased NEE-temperature relationship. A
detailed evaluation of individual months is recommended for studies
to evaluate relationships between seasonal climate and CO, fluxes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Reporting summary

Furtherinformation onresearch designis available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
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|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.
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Data access links N/A

May remain private before publication.

Files in database submission N/A

Genome browser session

(e.g. UCSC) N/A
Methodology

Replicates N/A

Sequencing depth N/A

Antibodies N/A

Peak calling parameters = N/A

Data quality N/A

Software N/A

Flow Cytometry

Plots
Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation N/A
Instrument N/A
Software N/A
Cell population abundance N/A
Gating strategy N/A

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type N/A




Design specifications N/A

Behavioral performance measures N/A

Acquisition
Imaging type(s) N/A
Field strength N/A
Sequence & imaging parameters N/A
Area of acquisition N/A
Diffusion MRI [ ]Used [ ] Notused

Preprocessing

Preprocessing software N/A
Normalization N/A
Normalization template N/A
Noise and artifact removal N/A
Volume censoring N/A

Statistical modeling & inference

Model type and settings N/A

Effect(s) tested N/A

Specify type of analysis: [ | Whole brain [ | ROI-based

Statistic type for inference N/A

(See Eklund et al. 2016)

Correction N/A
Models & analysis

n/a | Involved in the study
M |:| Functional and/or effective connectivity

|X| |:| Graph analysis

|X| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity N/A

Graph analysis N/A

Multivariate modeling and predictive analysis = N/A

[ ] Both
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	Autumn cooling paused increased CO2 release in central Eurasia

	Online content

	Fig. 1 Regional patterns of 2004–2018 autumn cooling and associated GPP and TER trends for the land north of 25° N.
	Fig. 2 Interannual variability of autumn NEE and CO2.




