In this work presented calculations results of vertical ozone flux in atmospheric surface layer. This flux was
calculate, using measurement data from vertical mast located on the territory of the observatory Fonovy since
September 2015 until March 2016. Significant daily flux dynamics was record in September, February and
March. Minimal flux observed at nighttime, then maximal flux observed at daytime and reached: -3.8, -3.2, -3.4,
µg/(m22s) month relatively. For the October, November, December, and January significant daily dynamic is
absent, daily value flux were -2.3 ± 0.2, -1.6 ± 0.2, -1.5 ± 0.3, -0.7 ± 0.3 µg/(m22s) relatively
Hanna K. Lappalainen,,, Veli-Matti Kerminen, Tuukka Petдjд,, Theo Kurten, Aleksander Baklanov,,
Anatoly Shvidenko, Jaana Bдck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold,
Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng,
Natalia Chubarova, Gerrit de Leeuw,, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev,
Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu,
Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hхrrak, Juha Janhunen,
Sirkku Juhola, Leena Jдrvi, Heikki Jдrvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov,
Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy,
Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura,
Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov,†, Vladimir Melnikov,,
Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie,
Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin,
Vladimir Shevchenko, Mikko Sipilд, Andrey Skorokhod, Dominick V. Spracklen, Hang Su,
Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya,
Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjц Viisanen, Timo Vesala,
Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo,
Valery Bondur, Sergej Zilitinkevich,,,, and Markku Kulmala,
        The northern Eurasian regions and Arctic Ocean
will very likely undergo substantial changes during the next
decades. The Arctic–boreal natural environments play a cru-
cial role in the global climate via albedo change, carbon
sources and sinks as well as atmospheric aerosol production
from biogenic volatile organic compounds. Furthermore, it is
expected that global trade activities, demographic movement,
and use of natural resources will be increasing in the Arctic
regions. There is a need for a novel research approach, which
not only identifies and tackles the relevant multi-disciplinary
research questions, but also is able to make a holistic sys-
tem analysis of the expected feedbacks. In this paper, we in-
troduce the research agenda of the Pan-Eurasian Experiment
(PEEX), a multi-scale, multi-disciplinary and international
program started in 2012 (https://www.atm.helsinki.fi/peex/).
PEEX sets a research approach by which large-scale re-
search topics are investigated from a system perspective and
which aims to fill the key gaps in our understanding of the
feedbacks and interactions between the land–atmosphere–
aquatic–society continuum in the northern Eurasian region.
We introduce here the state of the art for the key topics in
the PEEX research agenda and present the future prospects
of the research, which we see relevant in this context.
Boris D. Belan (), Natalya Voronetskaya (), Galina Pevneva (), Anatoly Golovko (), Alexandr Kozlov (),
Sergey Malyshkin (), Denis Simonenkov (), Denis Davydov (), Gennadii Tolmachev (), and Mikhail
Arshinov ()
        The annual behavior of the concentration of components of atmospheric particulate organic matter sampled in the
atmospheric layer from 500 to 8500 m is discussed. Compounds ranging from C8H18 to C35H72 were detected in
the composition of aerosol particles. The identified part of organic aerosols showed a distinct seasonal pattern with
a maximum in spring and a minimum during autumn.
        Geophysical Research Abstracts
Vol. 18, EGU2016-11692, 2016
EGU General Assembly 2016
        We study the annual behavior of the concentration of organic components of the atmospheric
aerosol, sampled onboard the Tu134 Optik airborne laboratory in the atmospheric layer of 500–8500 m. The
concentration of the organic component in aerosol composition is found to be maximal during spring and
minimal during fall. Compounds ranging from C8H18 to C35H72 are detected in the composition of aerosol
particles. The range of hydrocarbons is the widest during the winter period (C12H26–C35H72) and during
spring (C8H18–C31H64), and it is markedly narrower during summer (C18H38–C33H68) and during fall
(C16H34–C31H64). One mode (nalkane C20H42) predominates in aerosol composition throughout the year.
A secondary maximum, corresponding to nalkane C29H60, appears during the summer period.
        С помощью мобильной станции АКВ-2 было проведено 12 серий измерений температуры и влажности
воздуха в г. Томск и на его окраинах в разные сезоны года и при различных погодных условиях. Показано,
что во все сезоны наблюдается остров тепла, среднее приращение температуры в городе составляет 2 °С зи-
мой и 1 °С летом. Поля абсолютной влажности воздуха в Томске в теплое и холодное полугодия существен-
но различаются. Показано, что зимой источники влажности носят преимущественно антропогенный харак-
тер, а летом влажность в городе имеет естественное происхождение.
        Ключевые слова: городской остров тепла и влаги, мобильная станция; urban heat and moisture island, mobile station.
        Определен относительный вклад основных факторов возникновения острова тепла в г. Томск. Показано,
что основной вклад в образование острова тепла в Томске вносят антропогенные выбросы тепла (80–90%
зимой, 40–50% летом) и поглощение городской подстилающей поверхностью коротковолновой радиации
(5–15% зимой, 40–50% летом). Поглощение городской подстилающей поверхностью длинноволновой ра-
диации, поглощение влагой и примесями, а также затраты тепла на испарение незначительны. Показано, что
турбулентный поток тепла препятствует линейному увеличению интенсивности острова тепла при увеличе-
нии суммы потоков излучения, обеспечивающих приход энергии в область острова тепла. За счет увеличе-
ния турбулентного потока тепла в Томске происходит вынос 40–50% поглощенной энергии летом и 20–30%
зимой. Предложено выражение, позволяющее рассчитать интенсивность острова тепла в разные сезоны года,
время суток, а также при различных атмосферных условиях на основе измерения метеовеличин на стацио-
нарном посту наблюдения.
        Ключевые слова: интенсивность городского острова тепла, тепловой баланс подстилающей поверхности,
потоки тепла и радиации; intensity of urban heat island, heat balance of the underlying surface, heat and radiation flows.
        Представлены результаты комплексных наблюдений динамики пограничного слоя атмосферы, проведен-
ных на полигоне ИОА СО РАН в сентябре 2013 г. с использованием средств дистанционного зондирования –
аэрозольного и доплеровского лидаров. Рассмотрена структура аэрозольного и ветрового полей в период
возникновения внутренних волн плавучести и низкоуровневых струйных течений в пограничном слое.
        The results of an airborne survey of plumes from the Norilsk Mining and
Metallurgical Plant by an Optik-Й AN-30 aircraft laboratory on November 10, 2002 are
discussed. Most pollutants are blown out of the city in the gas phase in the form of acidic
oxides (mainly sulfur). Mapping of the substances is performed along the main trajectory of air
mass transport at a distance of 20-140 km from the city. Horizontal flights were performed at
400, 600, 800, and 1200 m above sea level at equidistant traverses (from 3 to 6 at each height)
normally to the main flow direction. Most pollution was concentrated above the 400-m level.
An active gas-to-particle conversion was observed at a distance of 60-100 km from the
emission source. In the plume areas distant from the source there was a sulfate anion increase
from 4% to 51% in aerosol composition weight and a calcium decrease from 64% to 9%.
Under the conditions of low humidity in the polar atmosphere in winter, SO2 is apparently
removed from the air mainly due to dry heterogeneous condensation with calcium oxide as the
main counteragent of industrial origin. The concentrations of these active pollutants in the
plume are well approximated by a two-parameter transformation model.
        In this work presented calculations results of vertical ozone flux in atmospheric surface layer. This flux was
calculate, using measurement data from vertical mast located on the territory of the observatory Fonovy since
September 2015 until March 2016. Significant daily flux dynamics was record in September, February and
March. Minimal flux observed at nighttime, then maximal flux observed at daytime and reached: -3.8, -3.2, -3.4,
µg/(m22s) month relatively. For the October, November, December, and January significant daily dynamic is
absent, daily value flux were -2.3 ± 0.2, -1.6 ± 0.2, -1.5 ± 0.3, -0.7 ± 0.3 µg/(m22s) relatively.
        Calculation results with algorithm reconstitution of vertical ozone source profile, shows that in inside daily period,
in background areas of West Siberia, photo-chemical ozone formation prevailing above ozone inflow process from
overlying stratum.
        The mass concentrations of the dry basis of aerosol and Black Carbon (November 2013 – December 2015) and the
volume particle size distributions (2015) measured in the monitoring mode under background conditions (Fonovaya
(Background) Observatory, 60 km west of Tomsk) and under urban conditions (Akademgorodok District of Tomsk) have
been used to determine the average seasonal contribution of the city to the aerosol characteristics. It has been found that
the annual profile of the seasonal average city contribution to the aerosol and Black Carbon (BC) contents, as well as the
volume fill factor of the submicron aerosol, has a maximum in winter and a minimum in summer. In the coarse size
range, the maximal excess of the volume fill factor was observed in the spring period. The observed differences between
the city and the background conditions for the relative content of Black Carbon in aerosol and the absorption coefficient
of the particulate matter were largest in summer and smallest in winter. Under the background conditions, the annual
behavior had an untypical feature, namely, the seasonal average aerosol concentrations in summer exceeded the values
obtained for the spring and autumn seasons. Analytical parameterization of the annual profile of monthly average
difference of the urban and background mass concentrations of aerosol and Black Carbon in the form of parabolic
dependence has been proposed.
        The study presents the data on the concentrations of chemical components measured in aerosol samples collected during
the IAO complex atmospheric radiation experiment (organized by the V.E. Zuev Institute of Atmospheric Optics) carried
out in December 22, 2015. Their vertical distributions derived from the sampling data performed with the use of “Optik”
Tupolev-134 aircraft laboratory are reported. Both parts of the experiment were conducted on the same route over
background areas of Tomsk and Novosibirsk regions in the daytime. General time duration of the flight was about 3,5
hours. Sampling was carried out on both routes onto Petryanov’s filters AFA-HP-20 in the following troposphere layers
7000-5500, 4000-3000, 2000-1500 and 1000-500 m. The differences in concentrations of carbon-free inorganic ions and
chemical elements in the aerosols on the Tomsk and Ordynskiy routes are discussed in the paper. An altitudinal
distribution of inorganic ions in both areas is very similar only for one ion - SO42-. The top layer is characterized by the
smallest differences in the concentrations of the other components under consideration, and even almost complete
coincidence of the total concentration of ionic macro components for both sensing areas. The trend in the vertical
distribution of elements stored for 2/3 of them like ionic component. As many ionic components in the Tomsk region of
sensing we observed inverse nature of the distribution of a large part of the element concentrations in the middle layers.
        Keywords: atmospheric aerosol, chemical composition, inorganic ions and chemical elements.