A review of investigations performed by researchers of the Institute of
Atmospheric Optics of the SB RAS in the region of Lake Baykal is given,
Starting from the formulated problem, the emphasis is on an analysis of the
aircraft-laboratory application to salvaging of the Baykal environment. It is
demonstrated that the aircraft-laboratory, capable of investigating the
atmosphere on a regional scale, is the most important means for pursuance of
integrated experiments, because its potentialities are adequate to scales of the
examined phenomena that should be well understood to study correctly the
ecological problems.
        Представлен обзор работ, которые Институт оптики атмосферы СО РАН проводит на Байкале. Исходя из
поставленной задачи, основное внимание уделено анализу применения самолета-лаборатории для природоохранных исследований.
Показано, что при постановке комплексных экспериментов самолет-лаборатория, позволяющая проводить
исследования в атмосфере в масштабах целого региона, является наиболее важным средством, поскольку ее
возможности адекватны масштабам явлений, понимание которых необходимо для корректного изучения экологических проблем.
        По данным измерений дисперсного состава аэрозоля в районе г. Томска за 1993–1994 гг. анализируется его
изменение при прохождении атмосферных фронтов. Показано, что в зоне фронта происходит не просто скачок
концентрации, а имеется сложный ход с максимумами и минимумами. Вид кривой изменения концентрации аэрозоля в зоне фронта зависит от направления его движения: холодный или теплый, и географического типа: арктический, полярный или тропический.
        Measurement data on disperse aerosol composition acquired in the vicinity of
Tomsk in 1993 and 1994 are used to analyze aerosol variations during the passage
of atmospheric fronts. It is shown that in the frontal zone, the aerosol concentration
goes through a series of maxima and minima rather than peaking only once. The
shape of the curve of aerosol variation within the frontal zone depends on the
direction of front propagation (cold or warm) and its origin (arctic, polar, or
tropical).
        Анализируются причины обнаруженного ранее многолетнего тренда концентрации аэрозоля над территорией
Западной Сибири. Рассматриваются два вида гипотез: поствулканическое действие и изменение параметров общей
циркуляции атмосферы. Показано, что этот тренд обусловлен циркуляционными процессами: усилением западной
зональной компоненты потока и изменением характера меридиональной циркуляции на территории региона.
        The causes are analyzed of the trend of aerosol concentration observed during
many years over Western Siberia. Two hypotheses are considered: the postvolcanic
effect and a change in the general atmospheric circulation. The trend is shown to
be caused by circulation processes, i.e., by strengthening of the westward zonal
component of the air flow, and by a change in the meridional circulation over the
region.
        Дается описание мотодельтаплана, оснащенного научным оборудованием для проведения оптико-
метеорологического зондирования атмосферы. Приводятся результаты измерений, полученных в ходе полетов.
Даются сведения об особенностях установки и эксплуатации оборудования на этом виде летательных устройств.
        We present here a description of the motor deltaplane, equipped with
scientific instrumentation for optical-meteorological sounding of the atmosphere.
The measurement results obtained during flights are also presented. The items of
the information on peculiarities of installation and operation of the instrumentation
on this kind of airborne platform are given.
        Описывается устройство заборника, позволяющего изокинетически отбирать пробы аэрозоля и тем самым
уменьшать погрешность измерений. При определении массовой концентрации взвешенных веществ погрешность может уменьшаться в 3–20 раз.
        We describe in this paper the construction of a collector capable of isokinetic
aerosol sampling and by that to reduce measurement errors. When determining the
mass concentration of suspended substances the error can decrease by 3-20 times.
        In December 1 992 a station for atmospheric observations has been put into operation at the Institute of
Atmospheric Optics within the frameworks of the program of ecological monitoring of Siberia. The station
provides for acquiring data on gas and aerosol composition of the atmosphere, on meteorological
quantities, and the background of gamma radiation. The station operates day and night and the whole year
round. All the measurement procedures are fully automated. Readouts from the measuring devices are
performed every hour 1 0 minutes averaged. In addition, synoptic information is also received at the station.
Periodically gas chromatographic analysis
is being done to determine concentrations of hydrocarbons
from the methane row. Occasionally, chemical composition of suspended matter is determined relative to 39
ingredients. The station is located to the north-east of Tomsk, Akademgorodok. Therefore sometimes it measures
air mass coming from Tomsk down town area and some times the air mass from rural areas. As a result
information obtained at this station should be typical for recreation zones around Tomsk.
        Airborne laboratories are used for the estimation of the environmental state during several tens of years. However,
the results obtained with such labs are incomplete, it follows from the analysis made in [1]. If the aircraft equipped
with contact means, they provide information only on one or two ingredients. ifremote systems are installed on it,
then it is possible to acquire information on vertical profiles (for example lidars) or spectral response of the
underlying surface[2]. Experience accumulated in TAO SB RAS thiring airborne sounding of cities and areas shows
that if all measurement systems are combined into an integrated complex, then information on environmental state
exhibits a new quality. At the same timesome some conditions should be achieved.First of all, the airborne
laboratory should be equipped with contact as well as with remote devices which duplicate measurement of the
same parameters. This allows to obtain more reliable data as well as to calibrate remote devices using contact data.
Second, all measurement instruments should be combined into a united information system to make syncronous
measurements. In this case data from different instruments complement each other. Third, all three media, i.e. soil,
water, and air should be controled by means of remote and contact means, that will esentially facilitate data
interpretation.
        Since 198 1 the Institute of Atmospheric Optics started regular airborne sounding of the atmosphere. As a
result
vast observational material has been compiled during the last decade. In fact three generations
of computers
changed in the course of airborne missions onboard, first IL-14 and then AN-30 aircrafts.
Therefore the data
have been stored in different formats and on different data media. In this connection it happened to
be an
urgent task at present to rewrite the whole data bulk in one and the same
format. Thus created data base
involves three types of data sets, i.e. profiles acquired during the ascends and descends, data collected along
horizontal flights, and data on chemical composition of air including data obtained with analytical
techniques in laboratory. This data base has been included into the list of data bases at
the Information Center
of the National Committee of the Russian Academy of Sciences (number 43).
During the period from 1989 till 1991 several ecological surveys have been performed
with an "Optik-E"
airborne laboratory on board an AN-30 aircraft over a number of cities. The data base compiled during
these
missions has similar to the above data base structure. It differs from that by additional
blocks of
information on flight routes necessary for mapping air pollutions. Data sampled inside stack plumes
from
plants with the aircraft and data collected with a ground-based mobile station
also differ it from that data
base.
        Keywords: data base, air pollutions, sample
        These measurements have been carried out directly by sampling on filters in the emission plumes by means of
airborne laboratory. Then filters have been analyzed in laboratory conditions. The analysis allowed the
determination of the concentration of 1 2 ions and 27 elements. Average concentration of each emission component
has been determined from known air volume passed throughw the filter. Wind speed has been measured at the
crossing ofthe emission plume whose area is found from lidar data. This allows us to find the average
concentration of contaminants in the emission as well as the emission gross yield.In this paper we present the data
on the composition of emissions from enterprises of Paviodar, Khabarovsk, Komsomolsk-on-Amur,
Nizhnevartovsk,and Nizhnii Tagil.