Belan, B. D.; Ivlev, G. A.; Kozlov, A. V.; Pestunov, D. A.; Sklyadneva, T. K.; Fofonov, A. V.
        We discuss the methodical aspects and approaches used to arrange solar radiation measurements at the Fonovaya Observatory at the V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, and the capabilities of the new radiation unit, integrated into the Observatory measurement system in 2020. It is equipped with a set of instruments allowing a continuous monitoring of the total (0.285-2.8 μm), total UV (0.280-0.400 μm), and UV-B radiation (0.280-0.315 μm), as well as the radiation balance. We describe the capabilities of software specially developed for the measurement data acquisition, transmission, and processing.
        Ground-based measurements at the Fonovaya Observatory in 2021 are used to analyze the varia-tions in solar radiation in the wavelength ranges 0.285–2.8, 0.280–0.400, and 0.280–0.315 μm. The calcula-tions of the radiation balance and albedo of the underlying surface are presented. The diurnal radiation bal-an ce is shown to b e − 1.20 ± 1.18 MJ/m2 during the period of stable snow cover, from November to March,and +8.83 ± 4.49 MJ/m2 in the snow-free period, from May to September. The diurnal solar radiationabsorption by the Earth’s surface is estimated to not exceed 2 MJ/m2 during the period of stable snow cover,from December to March, and to vary from 10 to 25 MJ/m2 in summer
Антохина О. Ю., Антохин П. Н., Аршинова В. Г., Аршинов М. Ю., Белан Б. Д., Белан С. Б., Давыдов Д. К., Ивлев Г. А., Козлов А. В., Рассказчикова Т. М., Савкин Д. Е., Симоненков Д. В., Скляднева Т. К., Толмачев Г. Н., Фофонов А. В.
        На основе данных реанализа ERA5 и среднесуточных приземных концентраций озона (О3), измеряемых на TOR-станции с 1993 по 2020 г., исследован режим циркуляции, способствующий формированию
экстремально высоких концентраций озона (95-й процентиль, далее О395). Обнаружено, что для всех месяцев прослеживается идентичный режим циркуляции, сопровождающийся повышением приземной температуры воздуха в районе, охватывающем станцию измерения концентрации озона. Помимо повышения температуры воздуха для событий О395 характерно усиление юго-западной составляющей поля скорости ветра.
Обнаружено, что эти циркуляционные особенности связаны с развитием меридиональности, вероятно, обусловленной распространением волн в верхней тропосфере умеренных широт. Выявленный циркуляционный
режим способствует одновременно трансграничному переносу озона и его предшественников из южных районов, усилению фотохимического образования О3, а также появлению природных пожаров.
М. П. Тентюков, К. А. Шукуров, Б. Д. Белан, Д. В. Симоненков,Г. В. Игнатьев, В. И. Михайлов
        Приведены результаты сравнительных исследований вертикальной изменчивости химического состава и соотношений субдисперсных фракций аэрозольного вещества в снежных слоях, хронологически привязанных к периодам выпадения стратиграфически значимых снегопадов. Показаны особенности концентрирования элементов-примесей на геохимических барьерах в снежной толще.
Обнаружено также, что межслоевое соотношение трех геохимически близких групп элементов: сидерофилов, сульфофилов, литофилов относительно устойчиво сохраняются в снежном покрове при
его нарастании. Траекторный анализ переноса воздушных масс к точке наблюдения, с которыми
связано выпадение стратиграфически значимых снегопадов, не позволил соотнести обнаруженный
геохимический феномен с предположением, что зимнее аэрозольное поле, формируемое над городской территорией при разных траекториях движения воздушных масс, может определенным образом наследоваться в снежных слоях при нарастании снежной толщи и тем самым влиять на особенности вертикального распределения элементов-примесей. Обоснованно постулируется, что межслоевые соотношения элементных парагенезисов, сохраняющие устойчивость в снежной толще при
ее нарастании, могут быть использованы в качестве геохимических маркеров застойных зон в городском острове тепла, а сам метод послойного геохимического опробования снежного покрова в
условиях редкой городской сети метеорологических наблюдений может быть эффективным дополнением при изучении микромасштабных атмосферных процессов для получения сведений об особенностях переноса загрязняющих веществ в городской среде над ограниченной территорией.
        аэрозоли, динамическое рассеяние света, геохимические барьеры, городской остров тепла, загрязнение атмосферы, изморозь, снежный покров, элементы-примеси, дальний перенос примесей, траекторный анализ
DOI: 10.31857/S0016752523010089, EDN: HZZJXY
Антохина О. Ю., Антохин П. Н., Аршинова В. Г., Аршинов М. Ю., Белан Б. Д., Белан С. Б., Гурулева Е. В., Давыдов Д. К., Ивлев Г. А., Козлов А. В., Law K. S., Рассказчикова Т. М., Paris J.-D.., Савкин Д. Е., Симоненков Д. В., Скляднева Т. К., Толмачев Г. Н., Фофонов А. В.
        В Арктике глобальное потепление происходит в два-три раза быстрее, чем в других регионах земного шара. В результате фиксируются заметные изменения во всех сферах окружающей среды. Однако данных о вертикальном распределении газового и аэрозольного состава воздуха над Российским сектором Арктики крайне мало, поэтому в сентябре 2020 г. на самолете-лаборатории Ту-134 «Оптик» был проведен эксперимент по зондированию атмосферы и водной поверхности над акваториями всех морей Северного Ледовитого океана в Российском секторе Арктики. В настоящей работе анализируется пространственное распределение метана. Показано, что в период эксперимента его концентрация была наибольшей над Карским морем (2090 млрд-1), наименьшая – над Чукотским (2005 млрд-1). Незначительно отличались от Чукотского моря по концентрации метана Восточно-Сибирское и Берингово моря. Средние значения СН4 характерны для Баренцева моря (2030 млрд-1) и моря Лаптевых (2040 млрд-1). Перепад концентраций между уровнем 200 м и свободной тропосферой достигал 150 млрд-1 над Карским морем, уменьшался до 91 и 94 млрд-1 над Баренцевым и морем Лаптевых и еще сильнее снижался над Восточно-Сибирским, Чукотским и Беринговым морями: до 66, 63 и 74 млрд-1 соответственно. Горизонтальная неоднородность в распределении метана над арктическими морями наибольшая над морем Лаптевых – 73 млрд-1, что в два раза выше, чем над Баренцевым и Карским морями и в пять-семь раз выше, чем над Восточно-Сибирским и Беринговым морями.
M. Yu. Arshinov, B. D. Belan, D. C. Davydov, A. V. Kozlov & A. V. Fofonov
        The dynamics of greenhouse gas fluxes, measured from 2017 to 2021 at the Fonovaya Observatory of V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, is studied. It is shown that the annual average fluxes of CO2 at the Observatory varied from −283 (sink) to +31 mg m−2 h−1 (emission). A minimal emission of 1351 mg m−2 h−1 was recorded in 2019, and a maximum of 1789 mg m−2 h−1, in 2021. The lowest sink was observed in 2017 (2099 mg m−2 h−1); the largest, equal to 2304 mg m−2 h−1, was in 2018. The annual average methane fluxes ranged from −0.032 in 2018 to −0.047 mg m−2 h−1 in 2020. The daily maximal methane emission was recorded in 2018 and was equal to 0.915 mg m−2 h−1, and the daily minimal emission, in 2021 (0.095 mg m−2 h−1). The maximal sink varied from year to year in a narrower range from −0.241 to −0.361 mg m−2 h−1. The soil of the measurement area turned out to be a strong source of SO2 and CH4 and a weak source of N2O. The annual average fluxes of NO2 were in the 0.00–0.011 mg m−2 h−1 range. The interannual emission maxima weakly changed from 0.237 to 0.301 mg m−2 h−1, and sink maxima, from −0.206 to −0.245 mg m−2 h−1.
M. D. Kravchishina, A. A. Klyuvitkin, A. N. Novigatsky, D. I. Glukhovets, V. P. Shevchenko & B. D. Belan
        A unique climate experiment was carried out to study the composition of air and characteristics of the underlying surface in the Russian sector of the Arctic and Siberia. Synchronized research on board the R/V Akademik Mstislav Keldysh and the unique scientific facility (USF) the Tu-134 Optik flying laboratory were carried out in the South Kara Sea. The airborne and spaceborne optical satellite algorithms were validated to retrieve the sea surface characteristics during the cruise. For the first time on the Arctic shelf, data on methane concentration in the natural troposphere–near-surface atmosphere over sea–water column–bottom sediments system was obtained. Greenhouse gases fluxes were estimated simultaneously from the shelf area and adjacent land. Related research on recent and ancient sedimentation conditions and processes was carried out in the South Kara sedimentary basin, where huge oil and natural gas reserves are located.
        Проведен уникальный климатический эксперимент по исследованию состава воздуха и характеристик подстилающей поверхности в Российском секторе Арктики и Сибири. Синхронизированные
исследования с борта НИС “Академик Мстислав Келдыш” и уникальной научной установки (УНУ)
самолета-лаборатории Ту-134 “Оптик” выполнены в южной части Карского моря. Проведена валидация авиационных и спутниковых алгоритмов расчета характеристик морской поверхности. Впервые
на арктическом шельфе получены данные о концентрации метана в системе тропосфера–приводный слой атмосферы–водная толща–донные отложения. Единовременно оценены потоки парниковых газов с акватории шельфа и прилегающей суши. Проведено сопряженное изучение условий
и процессов современной и древней седиментации в пределах Южно-Карского осадочного бассейна, где локализованы огромные запасы углеводородов (УВ).
Антохина О. Ю., Антохин П. Н., Аршинова В. Г., Аршинов М. Ю., Ancellet G., Белан Б. Д., Белан С. Б., Гурулева Е. В., Давыдов Д. К., Ивлев Г. А., Козлов А. В., Law K. S., Nedelec Ph., Рассказчикова Т. М., Paris J.-D.., Савкин Д. Е., Симоненков Д. В., Скляднева Т. К., Толмачев Г. Н., Фофонов А. В.
        Анализируется пространственное распределение углекислого газа над морями Российского сектора Арктики по результатам комплексного эксперимента, проведенного в сентябре 2020 г. Оказалось, что в период эксперимента приводная концентрация СО2 увеличивалась с запада на восток: наименьшая (396 млн-1) была над Баренцевым морем, наибольшая – над Чукотским (410 млн-1). Перепад концентраций между уровнем 200 м и свободной тропосферой достиг -15 млн-1 над Баренцевым морем и уменьшился до -5 млн-1 над морем Лаптевых. Над восточными морями перепад вообще стал положительным, что было связано с переносом воздуха из Аляски. Над акваториями большинства морей фиксируется горизонтальная неоднородность в распределении углекислого газа, отражающая региональные особенности ассимиляции его океаном и переноса с территории континента.
O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, E. V. Guruleva, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, K. Law, T. M. Rasskazchikova, J.-D. Paris, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev & A. V. Fofonov
        In the Arctic, global warming is 2–3 times faster than over other regions of the globe. As a result,
noticeable changes are already being recorded in all areas of the environment. However, there is very little data
on such changes in the Russian Arctic. Therefore, to fill the gap in the data on the vertical distribution of the
gas and aerosol composition of air in this region, an experiment was carried out on the Tu-134 Optik laboratory
aircraft in September 2020 to sound the atmosphere and water surface over the water areas of all seas in the Russian Arctic. This paper analyzes the spatial distribution of methane. It is shown that during the experiment its
concentration was the highest over the Kara Sea (2090 ppb), the lowest over the Chukchi Sea (2005 ppb). The
East Siberian and Bering seas were slightly different from the Chukchi Sea in terms of the methane concentration. Average values of CH4 are characteristic of the Barents (2030 ppb) and the Laptev Seas (2040 ppb).
The difference between the concentrations at an altitude of 200 meters and in the free troposphere attained
150 ppb over the Kara Sea, decreased to 91 and 94 ppb over the Barents and Laptev Seas, and further
decreased over the East Siberian, Chukchi, and Bering Seas to 66, 63, and 74 ppb, respectively. Horizontal
heterogeneity in the distribution of methane over the Arctic seas is the greatest over the Laptev Sea, where it
attained 73 ppb. It is two times higher than over the Barents and Kara Seas, and 5–7 times higher than over
the East Siberian and Bering Seas.
O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, G. Ancellet, B. D. Belan, S. B. Belan, E. V. Guruleva, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, K. Law, P. Nédélec, T. M. Rasskazchikova, J.-D. Paris, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev & A. V. Fofonov
        We analyze the spatial distribution of carbon dioxide over the seas of the Russian Arctic based on
the results of the comprehensive experiment conducted in September 2020. It turned out that during the
experiment, the concentration of CO2 increased from west to east. The minimum of 396 ppm was over the
Barents Sea, and the maximum of 4106 ppm was over the Chukchi Sea. The difference between the concentrations at an altitude of 200 m and in the free troposphere attained 156 ppm over the Barents Sea and
decreased to 56 ppm over the Laptev Sea. Over the eastern seas, the difference became generally positive,
which was associated with the air transfer from Alaska. Above the waters of most seas, the distribution of carbon dioxide was horizontally heterogeneous, which showed the regional features of its assimilation by the ocean and transfer from the continent.
V. V. Andreev, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, V. I. Demin, N. V. Dudorova, N. F. Elansky, G. S. Zhamsueva, A. S. Zayakhanov, R. V. Ivanov, G. A. Ivlev, A. V. Kozlov, L. V. Konovaltseva, M. Yu. Korenskiy, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, V. A. Obolkin, O. V. Postylyakov, V. L. Potemkin, D. E. Savkin, E. G. Semutnikova, I. A. Senik, E. V. Stepanov, G. N. Tolmachev, A. V. Fofonov, T. V. Khodzher, I. V. Chelibanov, V. P. Chelibanov, V. V. Shirotov & K. A. Shukurov
        We consider the distribution of tropospheric ozone on the territory of Russia in 2022 using data from 33 stations located in different physical and geographical zones, as well as its vertical distribution from results of aircraft sensing. It was shown that measurements at all measurement sites exceeded the maximum permissible daily average concentrations, determined by the national hygienic standard. In some regions, the excess over the maximum permissible concentrations of the working zone and over the maximum one-time hourly average concentrations is recorded, so that the population should be broadly warned about the monitoring results and measures should be taken to reduce the level of ozone concentration in the surface air layer.
Olga Yu. Antokhina, Pavel N. Antokhin, Boris D. Belan, Alexander V. Gochakov, Yuliya V. Martynova, Konstantin N. Pustovalov, Lena D. Tarabukina and Elena V. Devyatova
        In 2019, the southern region of Eastern Siberia (located between 45° N and 60° N) experienced heavy floods, while the northern region (between 60° N and 75° N) saw intense forest fires that lasted for almost the entire summer, from 25 June to 12 August. To investigate the causes of these natural disasters, we analyzed the large-scale features of atmospheric circulation, specifically the Rossby wave breaking and atmospheric blocking events. In the summer of 2019, two types of Rossby wave breaking were observed: a cyclonic type, with a wave breaking over Siberia from the east (110° E–115° E), and an anticyclonic type, with a wave breaking over Siberia from the west (75° E–90° E). The sequence of the Rossby wave breaking and extreme weather events in summer, 2019 are as follows: 24–26 June (cyclonic type, extreme precipitation, flood), 28–29 June and 1–2 July (anticyclonic type, forest fires), 14–17 July (both types of breaking, forest fires), 25–28 July (cyclonic type, extreme precipitation, flood), 2 and 7 August (anticyclonic type, forest fires). Rossby wave breaking occurred three times, resulting in the formation and maintenance of atmospheric blocking over Eastern Siberia: 26 June–3 July, 12–21 July and 4–10 August. In general, the scenario of the summer events was as follows: cyclonic Rossby wave breaking over the southern part of Eastern Siberia (45° N–60° N) caused extreme precipitation (floods) and led to low gradients of potential vorticity and potential temperature in the west and east of Lake Baikal. The increased wave activity flux from the Europe–North Atlantic sector caused the anticyclonic-type Rossby wave breaking to occur west of the area of a low potential vorticity gradient and north of 60° N. This, in turn, contributed to the maintenance of blocking anticyclones in the north of Eastern Siberia, which led to the intensification and expansion of the area of forest fires. These events were preceded by an increase in the amplitude of the quasi-stationary wave structure over the North Atlantic and Europe during the first half of June.
В. В. Андреев, О. Е. Баженов, Б. Д. Белан, П. Н. Варгин, А. Н. Груздев, Н. Ф. Еланский, Г. С. Жамсуева, А.С. Заяханов, С. Н. Котельников, И.Н. Кузнецова, М. Ю. Куликов, А. В. Невзоров, В. А. Оболкин, О.В. Постыляков, Е. В. Розанов, А. И. Скороход, А. А. Соломатникова, Е. В. Степанов, Ю. М. Тимофеев, А. М. Фейгин, Т. В. Ходжер
        Обзор содержит наиболее значимые результаты работ российских ученых в области исследований
атмосферного озона, выполненных в 2019–2022 гг. В нем рассмотрены наблюдения за тропосферным озоном, его распределение и изменчивость на территории РФ, взаимосвязь с атмосферными
параметрами, моделирование процессов образования и влияние на здоровье населения. Проанализировано также состояние стратосферного озона над Россией, моделирование процессов в озоносфере, разрабатываемые методы и приборы. Обзор является частью национального отчета России
по метеорологии и атмосферным наукам, который был подготовлен для Международной ассоциации по метеорологии и атмосферным наукам (IAMAS). Отчет был рассмотрен и одобрен на XXVIII
Генеральной Ассамблее международного геодезического и геофизического союза (IUGG).
        атмосфера, озон, озоновый слой, состав атмосферы, малые газовые примеси, качество воздуха, химия озона, процессы переноса
DOI: 10.31857/S0002351523070027, EDN: TVUPBQ
Андреев В. В., Аршинов М. Ю., Белан Б. Д., Белан С. Б., Давыдов Д. К., Демин В. И., Дудорова Н. В., Еланский Н. Ф., Жамсуева Г. С., Заяханов А. С., Иванов Р. В., Ивлев Г. А., Козлов А. В., Коновальцева Л. В., Коренский М. Ю., Котельников С. Н., Кузнецова И. Н., Лапченко В. А., Лезина Е. А., Оболкин В. А., Постыляков О. В., Потемкин В. Л., Савкин Д. Е., Семутникова Е. Г., Сеник И. А., Степанов Е. В., Толмачев Г. Н., Фофонов А. В., Ходжер Т. В., Челибанов И. В., Челибанов В. П., Широтов В. В., Шукуров К. А.
        Рассматривается распределение тропосферного озона на территории России в 2022 г. по данным 33 станций, расположенных в разных физико-географических зонах, а также его вертикальное распределение по результатам самолетного зондирования. Показано, что во всех пунктах измерений превышались предельно допустимые среднесуточные концентрации, установленные отечественным гигиеническим нормативом. В отдельных регионах фиксируется превышение предельно допустимых концентраций рабочей зоны и максимальных разовых среднечасовых концентраций в сложившейся ситуации необходимо широко информировать население о результатах мониторинга и проводить мероприятия по снижению уровня концентрации озона в приземном слое воздуха.
Антохина О. Ю., Антохин П. Н., Аршинова В. Г., Аршинов М. Ю., Ancellet G., Белан Б. Д., Белан С. Б., Давыдов Д. К., Ивлев Г. А., Козлов А. В., Law K. S., Nedelec Ph., Рассказчикова Т. М., Paris J.-D.., Савкин Д. Е., Симоненков Д. В., Скляднева Т. К., Толмачев Г. Н., Фофонов А. В.
        Настоящая статья продолжает цикл исследований состава воздуха над морями Российского сектора Арктики в сентябре 2020 г. Анализируется пространственное распределение следующих малых газовых составляющих: оксида углерода (СО), озона (О3), оксида и диоксида азота (NO, NO2) и диоксида серы (SO2). Показано, что концентрация О3 изменялась в приводном слое (высота 200 м) в диапазоне 18-36 млрд-1, СО - 60-130 млрд-1, NO - 0,005-0,12 млрд-1, NO2 - 0,10-1,00 млрд-1 и SO2 - 0,06-0,80 млрд-1. Над акваториями большинства морей распределение газов по площади было неоднородным, что, скорее всего, обусловливается различиями в поглощении их океаном и особенностями переноса с континента.
Тентюков М. П., Белан Б. Д., Симоненков Д. В., Патов С. А., Михайлов В. И., Симонова Г. В., Плюснин С. Н., Бобров Ю. А.
        Лишайники не только служат биологическим индикатором загрязнения атмосферы, но и сами влияют на ее химический состав. С помощью метода высокоэффективной жидкостной хроматографии в работе исследуются качественный состав экзометаболитов в талломах эпифитных лишайников . Сравнительный анализ фракционного состава осевшего аэрозольного вещества в водных смывах лишайников показал, что он характеризуется бимодальным типом распределения частиц. Постулируется, что появление мелкой фракции связано с формированием вторичных органических аэрозолей на поверхности эпифитных лишайников. Их прекурсорами выступают продукты фотоактивированных реакций между осевшим аэрозольным веществом и легколетучими органическими соединениями, поступающими на поверхность лишайников в результате эффлоресценции. Обсуждается механизм поступления вторичных органических аэрозолей в приземную атмосферу под воздействием радиометрического фотофореза.
Аршинов М. Ю., Белан Б. Д., Давыдов Д. К., Симоненков Д. В., Фофонов А. В.
        Одним из возможных источников поступления углекислого газа в атмосферу могут быть речные экосистемы. Приводятся результаты измерения потоков СО2 с поверхности нескольких рек и озер Томской обл. Показано, что в период экспериментов средние потоки углекислого газа составляли для р. Оби 143,7 ± 21,7 (13–14.08.2023 г.), 53,3 ± 21,2 (19.08.2023 г.) и 80,4 ± 59,9 мгС × м-2 × ч-1 (20.08.2023 г.); для р. Кеть – 66,1 ± 17,3; болотного озера Карасевое – 33,3 ± 17,3; р. Суйга 50,2 ± 23,0; р. Икса – 81,9 ± 11,5 мгС × м-2 × ч-1. Их величина существенно зависела не только от объекта исследования, но и от гидрометеорологических условий.
Пестунов Д. А., Шамрин А. М., Домышева В. М., Сакирко М. В., Панченко М. В.
        Представлены результаты исследования пространственного распределения концентрации метана в поверхностной воде оз. Байкал в весенний период. Основой послужили данные измерений, которые впервые были проведены в режиме круглосуточной непрерывной регистрации содержания СН4 по всей трассе прохода исследовательского судна в комплексных экспедициях ЛИН СО РАН в весенние сезоны 2013, 2016, 2017, 2018, 2021, 2022 гг. По результатам шести экспедиций сформирован объединенный массив данных из 12100 сегментов (шаг 0,005° по широте и 0,01° долготе), суммарная площадь которых составила 4466,7 км2, или 14% от поверхности оз. Байкал. Расчет статистических характеристик был осуществлен в четырех зонах: между изобатами 0 и 100 м, 100 и 200 м, 200 и 400 м, свыше 400 м. Проведенное сравнение значений концентраций метана в анализируемом массиве с данными других исследователей, полученными в разные годы на близких участках акватории, позволило заключить, что представленные в работе результаты адекватно отражают наиболее устойчивые особенности пространственной картины распределения концентрации СН4 в поверхностной воде оз. Байкал в весенние сезоны.
        In a recent publication in Nature Climate Change, Tang et al.1 reported an increase in net CO2 release under northern autumn cooling from 2004 to 2018, indicating that both autumn warming and cooling result in net CO2 release. Here we show that the conclusion regarding net CO2 release under autumn cooling was impacted by the choice of the autumn period, which resulted in overlooking the appropriate cooling regions. Our analysis of individual months in autumn with empirical upscaling of eddy flux observations (FLUXCOM2, the same data used by Tang et al.1) and atmospheric CO2 measurements from seven towers3 suggested that the increased net CO2 release paused during the 2004–2018 autumn cooling in central Eurasia.
Olga Antokhina, Pavel Antokhin, Alexander Gochakov, Anna Zbirannik, and Timur Gazimov
        The socioeconomic impacts caused by floods in the south of Eastern Siberia (SES), and the expected increase in precipitation extremes over northern Eurasia, have revealed the need to search for atmospheric circulation patterns that cause extreme precipitation events (EPE) in SES, as well as their changes. We investigate the circulation patterns causing extreme precipitation in SES and Mongolia, by examining the instability and moisture transport associated with potential vorticity (PV) dynamics during two time periods: 1982–1998 and 1999–2019. The EPE were characterized by an increase in instability within the precipitation area, which was compensated by stability around the area, with the East Asian summer monsoon transport being enhanced. PV in the subtropical regions and mid-latitudes has shown the amplification of positive and negative PV anomalies to the southeast and northwest of Lake Baikal, respectively. The PV contours for EPE have shapes of cyclonic wave breaking and cutoff low. EPE accompanied by wave breaking are characterized by strong redistribution areas, with extremely high and low stability and moisture. This can lead to the coexistence of floods and droughts, and in part was the driver of the earlier revealed “seesaw” precipitation mode over Mongolia and SES. We suggest a shift of extreme precipitation to the northwest has occurred, which was probably caused by the wave propagation change.
Irina S. Andreeva, Aleksandr S. Safatov, Vera V. Morozova, Nadezhda A. Solovyanova, Larisa I. Puchkova, Galina A. Buryak, Sergei E. Olkin, Irina K. Reznikova, Elena K. Emelyanova, Olesya V. Okhlopkova, Denis V. Simonenkov and Boris D. Belan
        The purpose of this study was to compare the concentration of total protein, as well as the composition and abundance of culturable microorganisms in atmospheric aerosols collected over the Vasyugan marshes and the Karakan pine forest during a flight in September 2018 at altitudes from 500 to 7000 m. The determined concentrations of total protein in Karakan samples were on average much less than those for the same area in September of other years. The concentration and composition of microorganisms in aerosol samples were determined by cultural methods and isolate genotyping. Altitude dependences of concentrations of total protein and culturable microorganisms were revealed. A rather stable altitude profile of culturable microorganism concentration was found over the Vasyugan marshes. No microorganisms were found at altitudes 4000 and 5500 m over the Karakan pine forest. Non-spore-bearing and spore-forming bacteria, as well as molds and yeast-like fungi, were isolated from aerosol samples. A high concentration of cosmopolitan psychrotolerant yeast Aureobasidium, capable of causing severe mycoses, and opportunistic bacteria Acinetobacter were found. A great similarity of composition and an atypically high abundance of non-spore-bearing bacteria and psychrotolerant yeast-like fungi were revealed in samples taken at altitudes of 1000 and 500 m in both studied regions, which may be a consequence of large-scale horizontal transport of layers of atmospheric air contaminated with microorganisms.
Karim Abdukhakimovich Shukurov, Denis Valentinovich Simonenkov, Aleksei Viktorovich Nevzorov, Alireza Rashki, Nasim Hossein Hamzeh, Sabur Fuzaylovich Abdullaev, Lyudmila Mihailovna Shukurova and Otto Guramovich Chkhetiani
        The average monthly profiles of the dust extinction coefficient (ε) were analyzed according to the CALIOP lidar data from 2006–2021 for 24 cells (size of 2° × 5°) in the Aral-Caspian arid region (ACAR; 38–48°N, 50–70°E). Using the NOAA HYSPLIT_4 trajectory model and the NCEP GDAS1 gridded (resolution of 1° × 1°) archive of meteorological data, the array of >1 million 10-day forward trajectories (FTs) of air particles that started from the centers of the ACAR cells was calculated. On the basis of the FT array, the average seasonal heights of the mixed layer (ML) for the ACAR cells were reconstructed. Estimates of the average seasonal dust optical depth (DOD) were obtained for ACAR’s lower troposphere, for ACAR’s ML (“dust emission layer” (EL)), and for the lower troposphere above the ML (“dust transit layer” (TL)) above each of the ACAR cells. Using the example of ACAR, it is shown that the analysis of DOD for the EL, TL and the surface layer (SL; the first 200 m AGL) makes it possible to identify dusty surfaces that are not detected on DOD diagrams for the entire atmospheric column, as well as regions where the regular transport of aged dust from remote sources can generate false sources. Based on FT array, the fields of the potential contribution of both the ACAR’s dust transit and the ACAR’s dust emission layers as well as of the entire ACAR’s lower troposphere into the DOD of the surrounding and remote regions are retrieved using the original method of potential impact of a three-dimensional source (3D-PSI). It has been found out that ACAR dust spreads over almost the entire Northern Hemisphere; the south and southeast regions of the ACAR are subject to the maximum impact of the ACAR dust. Quantitative estimates of the potential contribution of ACAR dust to the regional DODs are given for a number of control sites in the Northern Hemisphere. The results could be useful for climatological studies.
        Aral−Caspian arid region; long-range dust transport; Central Asian dust emission; CALIPSO CALIOP; HYSPLIT_4; 3D-source potential impact (3D-SPI) method
https://doi.org/10.3390/rs15112819
Clément Narbaud, Jean-Daniel Paris, Sophie Wittig, Antoine Berchet, Marielle Saunois, Philippe Nédélec, Boris D. Belan, Mikhail Y. Arshinov, Sergei B. Belan, Denis Davydov, Alexander Fofonov, and Artem Kozlov
        A more accurate characterization of the sources and sinks of methane (CH4) and carbon dioxide
(CO2) in the vulnerable Arctic environment is required to better predict climate change. A large-scale aircraft
campaign took place in September 2020 focusing on the Siberian Arctic coast. CH4 and CO2 were measured
in situ during the campaign and form the core of this study. Measured ozone (O3) and carbon monoxide (CO)
are used here as tracers. Median CH4 mixing ratios are fairly higher than the monthly mean hemispheric reference (Mauna Loa, Hawaii, US) with 1890–1969 ppb vs. 1887 ppb respectively, while CO2 mixing ratios from
all flights are lower (408.09–411.50 ppm vs. 411.52 ppm). We also report on three case studies. Our analysis
suggests that during the campaign the European part of Russia’s Arctic and western Siberia were subject to
long-range transport of polluted air masses, while the east was mainly under the influence of local emissions of
greenhouse gases. The relative contributions of the main anthropogenic and natural sources of CH4 are simulated
using the Lagrangian model FLEXPART in order to identify dominant sources in the boundary layer and in the
free troposphere. On western terrestrial flights, air mass composition is influenced by emissions from wetlands
and anthropogenic activities (waste management, fossil fuel industry, and to a lesser extent the agricultural sector), while in the east, emissions are dominated by freshwater, wetlands, and the oceans, with a likely contribution
from anthropogenic sources related to fossil fuels. Our results highlight the importance of the contributions from
freshwater and ocean emissions. Considering the large uncertainties associated with them, our study suggests
that the emissions from these aquatic sources should receive more attention in Siberia.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, Joël Thanwerdas, Adrien Martinez, Jean-Daniel Paris, Toshinobu Machida, Motoki Sasakawa, Douglas E. J. Worthy, Xin Lan, Rona L. Thompson, Espen Sollum, and Mikhail Arshinov
        The Arctic is a critical region in terms of global warming. Environmental changes are already progressing steadily in high northern latitudes, whereby, among other effects, a high potential for enhanced methane
(CH4) emissions is induced. With CH4 being a potent greenhouse gas, additional emissions from Arctic regions
may intensify global warming in the future through positive feedback. Various natural and anthropogenic sources
are currently contributing to the Arctic’s CH4 budget; however, the quantification of those emissions remains
challenging. Assessing the amount of CH4 emissions in the Arctic and their contribution to the global budget
still remains challenging. On the one hand, this is due to the difficulties in carrying out accurate measurements
in such remote areas. Besides, large variations in the spatial distribution of methane sources and a poor understanding of the effects of ongoing changes in carbon decomposition, vegetation and hydrology also complicate
the assessment. Therefore, the aim of this work is to reduce uncertainties in current bottom-up estimates of CH4
emissions as well as soil oxidation by implementing an inverse modelling approach in order to better quantify
CH4 sources and sinks for the most recent years (2008 to 2019). More precisely, the objective is to detect occurring trends in the CH4 emissions and potential changes in seasonal emission patterns. The implementation of
the inversion included footprint simulations obtained with the atmospheric transport model FLEXPART (FLEXible PARTicle dispersion model), various emission estimates from inventories and land surface models, and data
on atmospheric CH4 concentrations from 41 surface observation sites in the Arctic nations. The results of the
inversion showed that the majority of the CH4 sources currently present in high northern latitudes are poorly
constrained by the existing observation network. Therefore, conclusions on trends and changes in the seasonal
cycle could not be obtained for the corresponding CH4 sectors. Only CH4 fluxes from wetlands are adequately
constrained, predominantly in North America. Within the period under study, wetland emissions show a slight
negative trend in North America and a slight positive trend in East Eurasia. Overall, the estimated CH4 emissions
are lower compared to the bottom-up estimates but higher than similar results from global inversions.
Anastasiia Lampilahti, Olga Garmash, Mikhail Arshinov, Denis Davydov, Boris Belan, Steffen Noe, Marko Vana, Kaupo Komsaare, Heikki Junninen, Federico Bianchi, Janne Lampilahti, Lubna Dada, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala & Ekaterina Ezhova
        New particle formation (NPF) is an important atmospheric process where secondary aerosol particles are formed from gas phase precursors. We analyzed the NPF events that were observed in 2016–2018 at three boreal forest stations: the Fonovaya station in Siberia, Russia; the SMEAR II station in Central Finland; and the SMEAR Estonia station in Estonia. NPF events were found to occur less often in Siberia as compared with the European sites. In general, NPF occurred more frequently during daytime under clear sky conditions or in the presence of optically thin clouds, while NPF events were rather rare when the incoming solar radiation was low. Another factor influencing NPF in Siberia is linked to the availability of low-volatility vapors and their precursors. Particularly, a larger number of NPF events was detected under high SO2 concentrations, indicating the importance of sulfuric acid formed from SO2. The concentration of SO2 at the Siberian station is about an order of magnitude higher compared with the two other measurement sites. The concentration of NOx is also higher at Fonovaya station. During the NPF event days at Fonovaya, the wind was mostly from south-south-west (SSW) and south — the directions associated with the large industrial city Novosibirsk and industrial areas of eastern Kazakhstan. These areas are presumably the main source of anthropogenic trace gases measured at the Fonovaya station. In contrast to the European sites, relative humidity at Fonovaya did not differ significantly between the NPF and non-event days. The condensation sink was higher on non-event days at the European measurement sites but not always at Fonovaya. Air mass back trajectories showed that, oppositely to the European sites, there are no particular sectors around the Siberian site favoring NPF. Our results suggest that solar radiation and subsequent atmospheric chemistry govern the NPF processes in Siberia.
M. P. Tentyukov, K. A. Shukurov, B. D. Belan, D. V. Simonenkov, G. V. Ignatjev & V. I. Mikhailov
        The paper presents data acquired by a comparative study of the vertical variability in the chemical
composition and ratios of aerosol subdisperse fractions in snow layers chronologically correlated with the
stratigraphically significant snowfall periods. These data highlight features of the concentrating of trace elements at reactive (geochemical) barriers in the snow profile. The ratio of three geochemically close groups of
elements, such as siderophile, sulfophile, and lithophile elements, were found out to vary relatively little from
one snow layer to another in the growing snow cover. Trajectory analysis of the transfer of air masses to which
stratigraphically significant snowfalls were related to the observation site provides no evidence that the identified geochemical phenomenon can be explained by that the winter aerosol field that was formed above an
urban area with different trajectories of air masses can be somehow inherited in the snow layers of the growing
snow cover and thus affect the vertical distributions of trace elements. Evidence indicates that that the ratios
of assemblages of trace elements in the discrete snow layers, which remain stable with the growth of the snow
mass, can be employed as geochemical markers of stagnant zones in an urban heat island, and the method of
geochemical sampling of a snow cover in its discrete layers at a rare network of urban meteorological observation sites is an efficient additional tool for studying microscale atmospheric processes and recovering information on characteristics of the transfer of pollutants in a spatially limited urban area.
        aerosols, dynamic light scattering, reactive barriers, urban heat island, atmospheric pollution,
frost, snow cover, trace elements, long-range transport of trace elements, trajectory analysis
DOI: 10.1134/S0016702923010081
P. N. Antokhin, O. Yu. Antokhina, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D.
K. Davydov, A. V. Kozlov, D. A. Pestunov, A. V. Fofonov
        In this paper, an assessment was made of the vertical fluxes of nitrogen dioxide using the gradient method. The
calculations of nitrogen dioxide’s vertical fluxes were performed by utilizing gradient measurements of nitrogen
dioxide concentration and meteorological parameters at the Fonovaya Observatory of the Institute of Atmospheric
Optics, Siberian Branch of the Russian Academy of Sciences from January 2017 to January 2023.
P. N. Antokhin, O. Yu. Antokhina, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D.
K. Davydov, A. V. Kozlov, D. A. Pestunov, A. V. Fofonov
        The study presents the results of numerical modeling of ground-level nitrogen dioxide concentration for the Fonovaya Observatory and TOR station. The calculations were carried out for February 2023, when favorable conditions for the accumulation of pollutants in the surface layer were observed in the study area. As a result of the study, it can be concluded that the nitrogen dioxide emission rates provided in the EDGAR database for the study area are underestimated and need to be increased by a factor of 3 to 5.
Dmitry I. Glukhovets, Georgy A. Ivlev, Boris D. Belan
        A method has been developed for calculating the spectral remote sensing reflectance based on the total upwelling radiance measurements, carried out from the ‘Optik’ Tu-134 aircraft laboratory over the Kara Sea on September 10, 2022. Data on the spectral downwelling irradiance and the reference remote sensing reflectance were obtained during synchronous underaircraft measurements from the R/V ‘Akademik Mstislav Keldysh’. To calculate the remote sensing reflectance, a simple two-parameter formula is proposed (with the relative error of 7%), the application of which allows one to separate the reflected from the surface radiation and take into account the variability of sky conditions due to the influence of variable cloudiness.